1.重点内容: 向量的概念,向量的线性运算,向量的数量积和向量积,两向量垂直、平行的条件,两向量的夹角,向量的坐标表达式及其运算,单位向量,方向数与方向余弦,曲面方程和空间曲线方程的概念,平面方程、直线方程,平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件,点到平面和点到直线的距离,球面、柱面、旋转曲面,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程。 多元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念,有界闭区域上多元连续函数的性质,多元函数的偏导数和全微分,全微分存在的必要条件和充分条件,多元复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度,空间曲线的切线和法平面,曲面的切平面和法线,多元函数的极值和条件极值,多元函数的最大值、最小值及其简单应用,二重积分与三重积分的概念、性质、计算和应用,两类曲线积分的概念、性质及计算,两类曲线积分的关系,格林(Green)公式,平面曲线积分与路径无关的条件,二元函数全微分的原函数 两类曲面积分的概念、性质及计算,两类曲面积分的关系,高斯(Gauss)公式,斯托克斯(Stokes)公式,散度、旋度的概念及计算,曲线积分和曲面积分的应用。 常数项级数的收敛与发散的概念,收敛级数的和的概念,级数的基本性质与收敛的必要条件,几何级数与 p 级数及其收敛性,正项级数收敛性的判别法,交错级数与莱布尼茨定理,任意项级数的绝对收敛与条件收敛,函数项级数的收敛域与和函数的概念,幂级数及其收敛半径、收敛区间(指开区间)和收敛域,幂级数的和函数,幂级数在其收敛区间内的基本性质,简单幂级数的和函数的求法,初等函数的幂级数展开式,函数的傅里叶(Fourier)系数与傅里叶级数,狄利克雷(Dirichlet)定理,函数在[-l, l]上的傅里叶级数,函数在[0, l] 上的正弦级数和余弦级数。 2.难点内容: 多元函数的极限与连续概念,多元复合函数的求导,全微分存在的必要条件和充分条件,多元函数的极值和条件极值,多元函数的最大值、最小值及其简单应用;三重积分的计算;格林公式,曲线积分与路径无关的等价条件,二元函数全微分的原函数,高斯公式,第Ⅱ型曲面积分的概念及计算;傅里叶级数,函数在[-l, l]上的傅里叶级数,函数在[0, l] 上的正弦级数和余弦级数。